|Is Docker Infrastructure or Platform?
& Cloud Foundry intro

A Lecture for InstallFest 2017

by
Ing. Tomas Vondra
Cloud Architect at

AT CLOUD

Outline

Virtualization and laaS
PaaS

Docker

Problems with Docker
Cloud Foundry

Demo

Virtualization

* First used in 1969 by IBM
* On PC platform since 1999 (Vmware)
— Useful to run an OS on another

e Server virtualization since 2001
— Aims to increase utilization in datacenters

Hardware Virtualization

Operating system Dperating system Dperating system Operating system

[Applicatinn][.ﬂpplicatinnj [_ﬁ.pplicatiun][ﬁ.pplicatinn

[Application][Apphcation]

[Appl'ﬂ:aliun][Appli{:alju-n J

[Application][Application]

[Applicatinnj[ﬂpplicatinnj
[Application][Application]

[Applcation][Application

Hypervisor

Systemn hardware

Virtualization

 OS level virtualization aka. Containers
— Pros: no overhead at all, high memory efficiency

« Shared libraries and caches
— Cons: all guests share one kernel
« Still possible to have different distributions
— Uses kernel facilities for high separation of containers

« namespaces for user IDs, processes, network sockets,
filesystems

« control groups for resource quotas

— Parallels (commercial), OpenVZ (being phased out),
LXC, Docker, runC, Rocket, nSpawn, Warden

Containers

OS instance 1 0S instance 1 0% instance 1

[spplication 1] [Applicatiun 5] [Application 8 |

ﬁpplicauc:-n EJ e et Eﬂkpplil::almn Ei"l&ppli-:ahnn ?‘J IFﬁhp|::Iif:.sa|ti|::|r'| EI-_]

e, L.

r Database . Database
Application 3] - Application 10)

- R - ool
i [i
Application 4] Application 11
. . o

Operating system

System hardware

CPU RAM Hard disk e

Virtualization

» Advantages of server virtualization
— Increased utilization
— Power savings
— Separation of applications
— Higher flexibility
— Fast server deployment
— Load balancing
— Error resilience

Infrastructure as a Service

* An upgrade to virtualization

* First layer of Cloud Computing
— > general cloud properties
— Automation
— Elasticity
— Self-service and web services
— Pay per use

* Private, public and hybrid

Infrastructure as a Service

* What's a service? Computing power.

— Rationed in units of VM Instances
« An instance has fixed CPU and RAM
« There may be pre-defined types or user-configurable
« Can't modify when running -> horizontal scaling

« Storage
— File storage
— Volumes / Virtual disks (on central storage)

* Network connectivity (In/Out, between VMs)
« Usage of some APls (autoscaling, monitoring)

Scaling process in private laaS

Traditional Data Center Server e 4
Deployment Parties Involved: Eucalyptus Server Deployment

*|T
*Legal Deploy Eucalyptus
*Purchasing Machine Image

*Security/Compliance 1
Patch to Latest Version |

il | Tweak & Configure
*Platform Group :
*End-User

Bequest physical hardware
from IT department

&

Deploy 05 and Software

Patch to Latest Version

Tweak & Configure

Bundle into Eucalyptus
Image Catalog

pUBLUSP YM 3|E35

Depley to Production _
' Scale with
demand

Deploy to Production

Webhosting

* Provider does all hardware and software
administration

» Service usually includes domain
registration and e-mail

 Limits usable programming languages

— Most have PHP and ASP/.NET, some Perl
and Python, very few Java and Ruby

* Changes to the environment only through
the provider's service personnel

Webhosting

* Three types
— Free — mostly without scripting or with ads
— Shared — good for low traffic sites

— No information about how many sites on one server
« Hostings are compared only by latency

— Multitenancy security measures mostly minimal
— Managed

* eq. Server rental with administration
« Terms can be arranged quite individually

Platform as a Service

« Similar to webhosting in concept
— Used mostly to run web applications

» Second layer of Cloud Computing

— > general cloud properties
« Automation
* Elasticity
» Self-service and web services
» Pay per use

Platform as a Service

» Similarities to webhosting
— Takes care of software platform administration

— Limits available programming languages
 Selection is different, with regard to scalability
» mostly Ruby, Java, Python, PHP, Node.JS

 Often includes services like SQL and noSQL
databases, queue services, caches, etc.

Platform as a Service

* Two types of PaaS

—on laaS

» Uses a layered approach
— Depends on laaS for multitenancy
» And for the servers themselves

» Adds application deployment and scaling

— Direct
 Platform built from scratch, own hardware

« May or may not contain virtualization
— Must secure multitenancy somehow else
— > using containers in recent versions

Platform as a Service

 Added value

— Development tools
* From a command-line tool to deploy apps
« To a web dashboard with monitoring
» Or even a click-up-your-own-app web IDE
— Special services and APls
* To use platform features, databases, ..
— Using platform specifics induces risk of
vendor-lock in
« Open-source platforms have several providers

Where to get PaaS

* Public

— Google App Engine, Microsoft Azure, Amazon
Elastic Beanstalk, SalesForce Heroku,
AppFog, RedHat OpenShift, ActiveState
Stackato, CloudBees, IBM BlueMix, Pivotal

 Private (few mature projects)

— Pivotal Cloud Foundry, RedHat OpenShift,
Tsuru

— Wouldn’t waste time with the rest (Cloudify
didn’t work in dipl. thesis)

DevOps

Also known as Infrastructure as Code
— Server configuration is scripted

Fills the gap between developers and system
administrators

Repeatable processes that let you scale out
quickly

— Even if you start small, you write the scaling
Examples (by age): CFEngine, Puppet, Chef,
Ansible, SaltStack

— Commercial: RightScale, Amazon OpsWorks

Docker

e Recently, container virtualization
experienced a boom

e Docker platform took the lead in 2013
o LXC has been here since 2008, OpenVZ 2005

e \Why did it create a market disruption?
e Let's have a look at its design:

The Challenge

g Z &]]
k; es Static website Ak e “® Queue Analytics DB 3 _ 83
qma nginx 1.5 + modsecurity + openssl + bootstrap 2 .F[:dis + redissenting] | 12d00P + hive + thift + OpenJDK E a3 A
> = E G
ot =]
= @ ® & 03
= ‘e Background workers o \\eb frontend z o
£ _ ;)) Auby + Rails + sass + Unicorn s %
o Python 3.0 + celery + pyredis + libcurl + fimpeg + libopency + nodejs + -ﬁ- . 3
= phantomjs ee APl endpoint o

Python 2.7 + Flask + pyredis + celery + psycopg + postgresgl-client

. Cevelopeiont M Public Cloud

™ QA server

Production Cluster

Multiplicity of
hardware
environments

I

(7]
a &
€ 0
& o
= =
< <
=J
5
o

Disaster recovery

Customer Data Center ' Contributor's laptop .
p

Production Servers

0
(1]
>
3,
m
o
(g
™

Results in N X N compatibility nightmare

Static website

Web frontend

Background workers

Analytics DB

Development Single Prod Onsite Conmtributor’'s Customer
VM QA Servar Server Cluster Public Clod laptop Sarvers

Do | worry about Can I transport quickly
how goods interact and smoothly
(e.g. coffee beans (e.g. from boat to train
next to spices) to truck)

1960

Cargo Transport Pre

SJuiioys/3uijiodsuery
spooo jo Aypydiyniy 10} spoylaw
jo Aydipdininin

Also an NxN Matrix

Bve) «3

Multiplicity of Goods

methods for
transporting/storing

Multiplicity of

Q.

:

Solution: Intermodal Shipping Container

veallr WO . g&

A standard container that is
loaded with virtually any

goods, and stays sealed until
it reaches final delivery.

...in between, can be loaded and
unloaded, stacked, transported
efficiently over long distances,
and transferred from one mode
of transport to another

(3onJ3 03 ulen
0} }eoq wouj "3-3)
Ajyroows pue Apainb

(s=@21ds 01 3xau

sueaq 9302 "8'3)
12e421uU] Spood moy

noqge Asiom | oQ

uodsuesy jue?)

This eliminated the NXN problem...

Sl ol ol ol ol ol ol

Rl T T ———

Docker is a shipping container system for
code

[]

e Static website %* User DB g& Web frontend :: Queue es Analytics DB

54
T
T

o |

o
T

i

a

=+

L3
=

-J

...that can be manipulated using

An engine that enables any
payload to be encapsulated

Multiplicity of Stacks

asa
lightweight, portable, self-

5 3 standard operations and run
=Yg consistently on virtually any
S S E hardware platform
8T o e
= m = T

Q = ' [——
* Development QA server Customer Data Public Cloud Production Confributor’'s
docker VM Center Cluster laptop

12B131UI
sdde pue sa21MB5 0Q

Apppinb pue Ajyioows
eagiw | ue)

docker

Docker solves the NXN problem

- r
".‘I ® 2

®.8 ®
a’s %e® o

Static website

Web frontend

Background workers

Analytics DB

Development

VM QA Server

Single Prod
Server

Onsite
Cluster

S

Public Cloud

A

Conmtributor’'s Customer
laptop Sarvers

Docker: Build once, run everywhere

1. Prepare your development environment

2. Deploy it directly to production servers
(no need to rebuild your app)

... this concept is known from Java

https://en.wikipedia.org/wiki/Write once, run anywhere

https://en.wikipedia.org/wiki/Write_once,_run_anywhere
https://en.wikipedia.org/wiki/Write_once,_run_anywhere

Virtual Machines vs. Containers

VMs Containers
A E
App App E,p App : :
A A A :
Bins/ Bins/ Bins/
Libs Libs Libs !
Guest Guest Guest
0s 0s 0S
Original App Copy of Modified App
(Mo OS to take App
up space, resources, No 05, Can Union file system allows
or require restart) Share ;::insﬂibs us to only save the diffs

Between container A
and container
N

VMs
Every app, every copy of an
app, and every slight modification
of the app requires a new virtual server

Docker layers in action

docker images --tree

Warning: '--tree' is deprecated, it will be removed soon. See usage.
L-511136ea3c5a Virtual Size: 0 B Tags: scratch:latest

L -59e359cb35ef Virtual Size: 85.18 MB
L —e8d37d9e3476 Virtual Size: 85.18 MB Tags: debian:wheezy
L—c58b36b8f285 Virtual Size: 85.18 MB
L -90eabe05b074 Virtual Size: 118.6 MB
L—5dc74cffc471 Virtual Size: 118.6 MB Tags: vim:latest

Docker’s architecture

Client) [DOCKER_HOST) @—*

docker build - - 4.5 Docker daemon A0
s} < T %,
I‘ + X L= L AR
docker pull] i d
oc I , : :
) Containers — \.\ Images :
/ : :
ul \ NGiUX
docker run 9 @ |
/)) M |
ﬂﬂmﬂm ~ /
. /!

&

Source: https://docs.docker.com/engine/introduction/understanding-docker/

https://docs.docker.com/engine/introduction/understanding-docker/

Docker Hub

Cloud-based registry service for building and
shipping application or service containers.

e Image Repositories
e Automated Builds
e Webhooks

https://hub.docker.com/

https://hub.docker.com/
https://hub.docker.com/

Docker Summary

Container platform
o uses cgroups and namespaces through libcontainer

Unique features

o shipping format

o layered structure

o central repository of images

Keywords
o image
o instance

o volume
o open port

Examples: https://github.com/sameersbn

https://github.com/sameersbn

Docker critique

e \We already have shipping formats
o deb? rpm? OVF? tgz is inside OCI| anyway.
e Why layers anyway?
o Memory reduction not necessary - we have KSM

o Driver trouble

m overlays: incompatible kernel implementations
e aufs -> overlayfs -> overlayfs2

m Dbtrfs: “too many references”, crashed fs with du
m device-mapper thin provisioning: wastes space

e Central repository = a loaded gun
o 2015 survey: Over 30% of Official Images in Docker
Hub Contain High Priority Security Vulnerabilities

https://www.banyanops.com/blog/analyzing-docker-hub/

The gap between Docker and PaaS

Cl for consistent building of images

Image repository

Network security

-Host OS patching

_oad Balancing and Scaling

Databases and other persistence services
_0gging and monitoring

Service discovery

Orchestration of container relationships
Application updates and redeployment

Ref.arch. according to Robert Greiner

Container Development / Release Pipeline

Continuous e Container
- > .
Integration - Registry
2]
- [1]

I
|
L

__________ A
I

- °

Deployment

AT

. . : Tester
Balancer .)
-~ | @ e — ——— -

Link to Blog: Continuous Integration with Docker
http://bit.ly/2aeAlio

= Sonatype

http://bit.ly/2aeA1io
http://bit.ly/2aeA1io

Ref.arch. according to eggs unimedia

Docker Build Pipeline

u‘-."-.
Demlnper
Push .
)

\ Docker Private
y Jenkins Registry

Test and
Docker Public QA Server
Registry - |

Link to Presentation: Locally it worked! Virtualizing Docker
http://bit.ly/2au62ra

Sonatype

http://bit.ly/2au62ra
http://bit.ly/2au62ra

Cloud Foundry

Container technology not related to Docker
o “Warden” also uses cgroups and namespaces

No layers and central repository
Application is a first-class concept

o the container is an implementation detail

o built by language-specific buildpack at staging time
Provides ready-made Services

o MySQL, Postgres, Mongo, Redis, Riak, RabbitMQ
Load balancing and scaling built in

Can run Docker containers as well

o volumes and TCP load balancers already available
o virtual networking in the making

CLOUD FQUNDRY
PY

PROGRAMMING LANGUAGES CLIs & IDE INTEGRATIONS

g) A > Visual Studio
Java python _ .
PLATFORM =& ~clipse
RUNTIME) o (: eclips
CAPABILITIES s ﬁfﬁifl‘-
. .Framework Dq VS Code
_ CONTAINER MANAGEMENT CONFIGURATION SERVICE CATALOG
LOGGING & METRICS MESS G
OPERATIONS
ZERODOWNTIME | FAILURE &RECOVERY | SCALING | SECURITY &PATCHING | PLATFORM UPGRADES
EMC
INFRASTRUCTURE OPENSTACK VMWARE AWS AZURE GOOGLE OPENSTACK IBM SAREMETAL

APPLICATION SERVICES

DATABASES

OBJECT STORAGE

TESTING

CONTINUOUS
INTEGRATION & DELIVERY

USER PROVIDED

Cloud Foundry market share

Cloud Foundry
Amazon Web Services
Microsoft Azure

Oracle (Java/Database)

Google App Engine

Force.com (Salesforce.com) _ 16%
AliCloud | B2
Kubernetes - 6%

Tencent Weiyun
Red Hat OpenShift
CloudBees

Baidu Cloud
Apcera

Tsuru

None

0 10 20 30 40 50
Cloud Foundry foundation

Cloud Foundry market share

1005
8%
0% —
|- II II-.- .-: : I' | |Ii| | l.ii
~ _AAl NNl N } || I |
Kubernetes Mesos Shell Scripts CloudFoundry

Docker Swarm CAPS OpenShift OpenStack
' Mar16 [June'i6 [Nov'16

Kurbernetes foundation

Cloud Foundry market share

Kubernetes

CloudFoundry

OpenShift

Mesos

Cloudify

Docker Swarm

Other

0% 10% 20%

17% 1% 3% 22%
EEETEE v s o
_ 13% 5% 1% 20%
o 2% 8%

[TR
% 2% 24%

|

50%

6% 47%

B Production
Dev/QA
Proof of Concept

Fiaure 6.1 n=203 shows all of 2016

OpenStack foundation

History in comparison with Kubernetes

e CF is here since 2011

e Kubernetes 2014

e OpenShift also 2011, but was rewritten from
scratch based on Kubernetes

e CF has a history of continual evolution
o originally by VMware
o 2013 transferred to daughter company Pivotal
o 2014 Cloud Foundry Foundation established
m Open-source governance

All dates in this presentation are from Wikipedia

Application deployment

e Process starts with magic words “cf push”

O

O O O O O O

Uploads and stores app files

Examines and stores app metadata

Buildpack runs and creates a “droplet” of the app
Selects an appropriate Diego cell

Starts the app

Optionally creates a route to the app

Optionally configures service connections

Stacks, Buildpacks, and the rest

e Stack is a base file system
o “cflinuxfs2” is based on Ubuntu 14

e Buildpack packages the app and its
dependencies

Droplet is a container image

Droplets are stored in the Blobstore

Diego cell is the machine running containers

Warden/Garden is the container technology

e |If the standard buildpacks are not enough, you can write
your own
e See what is already available in the community

https://github.com/cloudfoundry-community/cf-docs-contrib/wiki/Buildpacks#community-created

CF Cloud Controller CCNG — Diego Cell Diego Cell
Command Line (CCNG) Blobstore (Staging) (Running)

Developer | | I | ' '
| ; : : : | |
I ! ! I |

1 |
'e CF Push >J' i i i i i
|] i
: eCreate App ! : : : :
y |
' " Stores App Metadata o | 1
: : | =3 I !
| oUpIoad App Files_ 1 : : : n
I - i I I
| Store App Files | !
' ' o—— : : :
; I I |
! eApp Start - : : i i
' . : : : |
' ! Stage App | , \, |
: : o . | S :
' ' : | Stream Staging Output |
= ’ ' : : 0 :
: : : I IStore App Droplete :
| ' : i : .
I : i | |
: : : - : Report Staging Complete :
| 1 1< T T |
' : : ! : . |
: : Start Staged App ! : - :
I ' Q | | I i
| I | ;
! ' ' ! ! . Report App Status
| |
| I < : . . &

traffic-controller doppler m

traffic controller doppler

] o file-server

?..‘299(??3?% __ | I
T ot Lot et e a.l bp - ssh-proxy D I:‘ I:‘ I:' I:' D

SEHOED
: running 1 '

metron-agent o

l : : garden-finux
stager A ; database [[R
1 : garden
clond el ce-uploader 5 -
controller] i ——
o ; : bbs db .. .S ¥
nsync] (etcd) I |
. | : : : executor :
tps ; 4
hsha. s [E— — 4 | rep
- | - I
tasks &
consul-agent LS !
: S — bbs -
| routing | -
table
B converger auctioneer
gorouter route-emitter :
Aactual ﬁ

- - A desired | e A
routing i

diego
cloud-foundry
build pack- docker- windows-
Inigo Vizzini CATS app-lifecycle app-lifecycle app-lifecycle
Integration Tests Diego Acceptance Tests CF Acceptance Tests T 1 T
builder | launcher builder | launcher builder | launcher
health diego health diego health diego
check sshd check sshd check sshd

Monitoring and Scaling

e Open-source version provides APIs to
o see current CPU, memory and disk usage
o scale the number of instances horizontally
o scale the application resource quota vertically
m restarts the app

e Our version will have autoscaling
o metrics from API stored in Influxdb
o user specifies scaling rules
m like CPU over 70% for 5 minutes
o autoscaler engine horizontally scales the app
o all integrated in the Home at Cloud portal

reg's lambdaiN)

rags QfN)

machines

120 140

100

80 80

12 14

10

Load

Utilization

S -4
8 .
Z
=)
&
=
g -
1
0 1545 3630 5715 78O0 9885 12180 14685 17190 19695 0 1545 3830 5715 7800 9885 12180 14685 17190 19695
time {imin) time {min)
Queue Length Response Time
2 4
£
o
g g
S 4
0 1545 3630 5715 78O0 9885 12180 14685 17190 19695 0 1545 3830 5715 7800 9885 12180 14685 17190 19695
time {min) time {min}
Machines ApdexS
@
A=
-~
<
T
LR
wr |
=
=+
L L =

G
0 1545 3630 5715 7800 9885 12180 14685 17190 19695

time {min)

e ____
0 1545 3630 5715 7800 9885 12180 14685 17190 19645

time {min}

Routing

e Done by CF component gorouter
e Multiple gorouters behind HAProxy

e Cando

Shared domain
Bring-your-own-domain
Domain with path

Multiple routes to one app
One route to multiple apps

e Recently added component tcprouter

O O O O O

Blue-green deployment

CF demo-time.example.com i
ROUTER

Blue-green deployment

demo-time.example.com
e
"

Blue-green deployment

demo-time.example.com > e

Blue-green deployment

Blue-green deployment

CF demo-time.example.com

ROUTER

Lyve demo

1. Get the CLI tool “cf” from Github

2 . #L cf login -a http://api.cftest.homeatcloud.cz -u user -p pass --skip-ssl-validation

3. Try and see what you have:

cf help # All commands

cf apps # Deployed apps

cf marketplace # Available CF services
cf services # Deployed service instances
cf logs --recent spring-music # logs

cf app spring-music # info

cf ssh spring-music # ssh

https://github.com/cloudfoundry/cli#downloads

How did | get the service?

e Create the MongoDB service

cf create-service MongoDB standard <instance_name>
cf bind-service <app_name> <instance_name>

e The App receives this JSON ENV variable:

VCAP_SERVICES=
{ "mongodb™: [{
"name": "db-for-spring-music",
"label": "mongodb",
"tags": [
"mongodb"
1,
"plan”; "standard",
"credentials": {
"uri":
"mongodb://mongo_username:mongo_pass@192.168.3.12:27017,192.168.3.11:27017 1
92.168.3.10:27017/dbname"

por1}

And the app?

e Official CF demo app in Java
o You probably need to have a JDK in your $PATH

git clone https://github.com/cloudfoundry-samples/spring-music.git
cd spring-music/
./gradlew assemble

cf push

cf bind-service spring-music <service_instance_name>
cf restart spring-music

if you see timeouts, they’re due to insufficient entropy on the hosting VM; try
cf push --health-check-type none

or before restart/restage

cf set-health-check spring-music none

Why | could use just cf push

... without arguments?
The app has a manifest.yml file:

$ cat manifest.ymi

applications:
- name: spring-music
memory: 1G
random-route: true
path: build/libs/spring-music.jar

https://docs.cloudfoundry.org/devguide/deploy-apps/manifest.html

| already had a Docker image!

e CF runs those as well
o Quite new, not as well tested
o You should get the same ENV variable with service
info when your Entrypoint is called
e Only works with images in Dockerhub
o ..or another public registry, not local uploads (yet?)

e You may try some examples:

cf push test-app -o cloudfoundry/test-app
#or
cf push lattice-app -o cloudfoundry/lattice-app

Don’t try this at home

e Actually, you can. See microBOSH
e Our beta deployment on OpenStack

e Including admin station and ELK, uses
o 51 VMs, 65 vCPU, 82 GB RAM, 885 GB local and
1,4 TB persistent storage
e Open Core means a lot of work
o operations, services, monitoring, logging, accounting
o autoscaling (bachelor’s thesis)
e Still missing to production

o SSL, customer portal integration, billing
o user testing

Questions?

If not:
Write to support@homeatcloud.cz
for beta access to Cloud Foundry at

Offer valid for 2 weeks.
End of beta program will be announced one month in advance.

mailto:support@homeatcloud.cz

