
Is Docker Infrastructure or Platform?
& Cloud Foundry intro

A Lecture for InstallFest 2017

by
Ing. Tomáš Vondra
Cloud Architect at

Outline

● Virtualization and IaaS
● PaaS
● Docker
● Problems with Docker
● Cloud Foundry
● Demo

Virtualization

• First used in 1969 by IBM
• On PC platform since 1999 (Vmware)
– Useful to run an OS on another

• Server virtualization since 2001
– Aims to increase utilization in datacenters

Hardware Virtualization

Virtualization

• OS level virtualization aka. Containers
– Pros: no overhead at all, high memory efficiency

• Shared libraries and caches

– Cons: all guests share one kernel
• Still possible to have different distributions

– Uses kernel facilities for high separation of containers
• namespaces for user IDs, processes, network sockets,

filesystems
• control groups for resource quotas

– Parallels (commercial), OpenVZ (being phased out),
LXC, Docker, runC, Rocket, nSpawn, Warden

Containers

Virtualization

• Advantages of server virtualization
– Increased utilization
– Power savings
– Separation of applications
– Higher flexibility
– Fast server deployment
– Load balancing
– Error resilience

Infrastructure as a Service

• An upgrade to virtualization
• First layer of Cloud Computing

– > general cloud properties
– Automation
– Elasticity
– Self-service and web services
– Pay per use

• Private, public and hybrid

Infrastructure as a Service

• What's a service? Computing power.
– Rationed in units of VM Instances

• An instance has fixed CPU and RAM
• There may be pre-defined types or user-configurable
• Can't modify when running -> horizontal scaling

• Storage
– File storage
– Volumes / Virtual disks (on central storage)

• Network connectivity (In/Out, between VMs)
• Usage of some APIs (autoscaling, monitoring)

Scaling process in private IaaS

Webhosting

• Provider does all hardware and software
administration

• Service usually includes domain
registration and e-mail

• Limits usable programming languages
– Most have PHP and ASP/.NET, some Perl

and Python, very few Java and Ruby
• Changes to the environment only through

the provider's service personnel

Webhosting

• Three types
– Free – mostly without scripting or with ads
– Shared – good for low traffic sites
– No information about how many sites on one server

• Hostings are compared only by latency
– Multitenancy security measures mostly minimal
– Managed

• eq. Server rental with administration
• Terms can be arranged quite individually

Platform as a Service

• Similar to webhosting in concept
– Used mostly to run web applications

• Second layer of Cloud Computing
– > general cloud properties

• Automation
• Elasticity
• Self-service and web services
• Pay per use

Platform as a Service

• Similarities to webhosting
– Takes care of software platform administration
– Limits available programming languages

• Selection is different, with regard to scalability
• mostly Ruby, Java, Python, PHP, Node.JS
• Often includes services like SQL and noSQL

databases, queue services, caches, etc.

Platform as a Service

• Two types of PaaS
– on IaaS

• Uses a layered approach
– Depends on IaaS for multitenancy

» And for the servers themselves

• Adds application deployment and scaling
– Direct

• Platform built from scratch, own hardware
• May or may not contain virtualization

– Must secure multitenancy somehow else
– > using containers in recent versions

Platform as a Service

• Added value
– Development tools

• From a command-line tool to deploy apps
• To a web dashboard with monitoring
• Or even a click-up-your-own-app web IDE

– Special services and APIs
• To use platform features, databases, ..

– Using platform specifics induces risk of
vendor-lock in
• Open-source platforms have several providers

Where to get PaaS

• Public
– Google App Engine, Microsoft Azure, Amazon

Elastic Beanstalk, SalesForce Heroku,
AppFog, RedHat OpenShift, ActiveState
Stackato, CloudBees, IBM BlueMix, Pivotal

• Private (few mature projects)
– Pivotal Cloud Foundry, RedHat OpenShift,

Tsuru
– Wouldn’t waste time with the rest (Cloudify

didn’t work in dipl. thesis)

DevOps

• Also known as Infrastructure as Code
– Server configuration is scripted

• Fills the gap between developers and system
administrators

• Repeatable processes that let you scale out
quickly
– Even if you start small, you write the scaling

• Examples (by age): CFEngine, Puppet, Chef,
Ansible, SaltStack
– Commercial: RightScale, Amazon OpsWorks

Docker

● Recently, container virtualization
experienced a boom

● Docker platform took the lead in 2013
○ LXC has been here since 2008, OpenVZ 2005

● Why did it create a market disruption?
● Let’s have a look at its design:

Docker: Build once, run everywhere

1. Prepare your development environment
2. Deploy it directly to production servers

(no need to rebuild your app)

… this concept is known from Java
https://en.wikipedia.org/wiki/Write_once,_run_anywhere

https://en.wikipedia.org/wiki/Write_once,_run_anywhere
https://en.wikipedia.org/wiki/Write_once,_run_anywhere

Virtual Machines vs. Containers

Docker layers in action
docker images --tree
Warning: '--tree' is deprecated, it will be removed soon. See usage.
└─511136ea3c5a Virtual Size: 0 B Tags: scratch:latest
 └─59e359cb35ef Virtual Size: 85.18 MB
 └─e8d37d9e3476 Virtual Size: 85.18 MB Tags: debian:wheezy
 └─c58b36b8f285 Virtual Size: 85.18 MB
 └─90ea6e05b074 Virtual Size: 118.6 MB
 └─5dc74cffc471 Virtual Size: 118.6 MB Tags: vim:latest

Docker’s architecture

Source: https://docs.docker.com/engine/introduction/understanding-docker/

https://docs.docker.com/engine/introduction/understanding-docker/

Docker Hub

Cloud-based registry service for building and
shipping application or service containers.

● Image Repositories
● Automated Builds
● Webhooks

https://hub.docker.com/

https://hub.docker.com/
https://hub.docker.com/

Docker Summary

● Container platform
○ uses cgroups and namespaces through libcontainer

● Unique features
○ shipping format
○ layered structure
○ central repository of images

● Keywords
○ image
○ instance
○ volume
○ open port

● Examples: https://github.com/sameersbn

https://github.com/sameersbn

Docker critique

● We already have shipping formats
○ deb? rpm? OVF? tgz is inside OCI anyway.

● Why layers anyway?
○ Memory reduction not necessary - we have KSM
○ Driver trouble

■ overlays: incompatible kernel implementations
● aufs -> overlayfs -> overlayfs2

■ btrfs: “too many references”, crashed fs with du
■ device-mapper thin provisioning: wastes space

● Central repository = a loaded gun
○ 2015 survey: Over 30% of Official Images in Docker

Hub Contain High Priority Security Vulnerabilities

https://www.banyanops.com/blog/analyzing-docker-hub/

The gap between Docker and PaaS

● CI for consistent building of images
● Image repository
● Network security
● Host OS patching
● Load Balancing and Scaling
● Databases and other persistence services
● Logging and monitoring
● Service discovery
● Orchestration of container relationships
● Application updates and redeployment

Ref.arch. according to Robert Greiner

Link to Blog: Continuous Integration with Docker
http://bit.ly/2aeA1io

http://bit.ly/2aeA1io
http://bit.ly/2aeA1io

Ref.arch. according to eggs unimedia

Link to Presentation: Locally it worked! Virtualizing Docker
http://bit.ly/2au62ra

http://bit.ly/2au62ra
http://bit.ly/2au62ra

Cloud Foundry

● Container technology not related to Docker
○ “Warden” also uses cgroups and namespaces

● No layers and central repository
● Application is a first-class concept

○ the container is an implementation detail
○ built by language-specific buildpack at staging time

● Provides ready-made Services
○ MySQL, Postgres, Mongo, Redis, Riak, RabbitMQ

● Load balancing and scaling built in
● Can run Docker containers as well

○ volumes and TCP load balancers already available
○ virtual networking in the making

Cloud Foundry market share

Cloud Foundry foundation

Cloud Foundry market share

Kurbernetes foundation

Cloud Foundry market share

OpenStack foundation

History in comparison with Kubernetes

● CF is here since 2011
● Kubernetes 2014
● OpenShift also 2011, but was rewritten from

scratch based on Kubernetes
● CF has a history of continual evolution

○ originally by VMware
○ 2013 transferred to daughter company Pivotal
○ 2014 Cloud Foundry Foundation established

■ open-source governance

All dates in this presentation are from Wikipedia

Application deployment

● Process starts with magic words “cf push”
○ Uploads and stores app files
○ Examines and stores app metadata
○ Buildpack runs and creates a “droplet” of the app
○ Selects an appropriate Diego cell
○ Starts the app
○ Optionally creates a route to the app
○ Optionally configures service connections

Stacks, Buildpacks, and the rest

● Stack is a base file system
○ “cflinuxfs2” is based on Ubuntu 14

● Buildpack packages the app and its
dependencies

● Droplet is a container image
● Droplets are stored in the Blobstore
● Diego cell is the machine running containers
● Warden/Garden is the container technology
● If the standard buildpacks are not enough, you can write

your own
● See what is already available in the community

https://github.com/cloudfoundry-community/cf-docs-contrib/wiki/Buildpacks#community-created

Monitoring and Scaling

● Open-source version provides APIs to
○ see current CPU, memory and disk usage
○ scale the number of instances horizontally
○ scale the application resource quota vertically

■ restarts the app
● Our version will have autoscaling

○ metrics from API stored in Influxdb
○ user specifies scaling rules

■ like CPU over 70% for 5 minutes
○ autoscaler engine horizontally scales the app
○ all integrated in the Home at Cloud portal

Routing

● Done by CF component gorouter
● Multiple gorouters behind HAProxy
● Can do

○ Shared domain
○ Bring-your-own-domain
○ Domain with path
○ Multiple routes to one app
○ One route to multiple apps

● Recently added component tcprouter

Blue-green deployment

Blue-green deployment

Blue-green deployment

Blue-green deployment

Blue-green deployment

Lyve demo

1. Get the CLI tool “cf” from Github
2. #
3. Try and see what you have:

cf login -a http://api.cftest.homeatcloud.cz -u user -p pass --skip-ssl-validation

cf help # All commands
cf apps # Deployed apps
cf marketplace # Available CF services
cf services # Deployed service instances
cf logs --recent spring-music # logs
cf app spring-music # info
cf ssh spring-music # ssh

https://github.com/cloudfoundry/cli#downloads

How did I get the service?

● Create the MongoDB service

● The App receives this JSON ENV variable:

cf create-service MongoDB standard <instance_name>
cf bind-service <app_name> <instance_name>

VCAP_SERVICES=
{ "mongodb": [{
 "name": "db-for-spring-music",
 "label": "mongodb",
 "tags": [
 "mongodb"
],
 "plan": "standard",
 "credentials": {
 "uri":
"mongodb://mongo_username:mongo_pass@192.168.3.12:27017,192.168.3.11:27017,1
92.168.3.10:27017/dbname"
 } }],}

And the app?

● Official CF demo app in Java
○ You probably need to have a JDK in your $PATH

git clone https://github.com/cloudfoundry-samples/spring-music.git
cd spring-music/
./gradlew assemble

cf push

cf bind-service spring-music <service_instance_name>
cf restart spring-music

if you see timeouts, they’re due to insufficient entropy on the hosting VM; try
cf push --health-check-type none
or before restart/restage
cf set-health-check spring-music none

Why I could use just cf push

… without arguments?
The app has a manifest.yml file:

$ cat manifest.yml

applications:
- name: spring-music
 memory: 1G
 random-route: true
 path: build/libs/spring-music.jar

https://docs.cloudfoundry.org/devguide/deploy-apps/manifest.html

I already had a Docker image!

● CF runs those as well
○ Quite new, not as well tested
○ You should get the same ENV variable with service

info when your Entrypoint is called
● Only works with images in Dockerhub

○ ..or another public registry, not local uploads (yet?)
● You may try some examples:

cf push test-app -o cloudfoundry/test-app
#or
cf push lattice-app -o cloudfoundry/lattice-app

Don’t try this at home

● Actually, you can. See microBOSH
● Our beta deployment on OpenStack
● Including admin station and ELK, uses

○ 51 VMs, 65 vCPU, 82 GB RAM, 885 GB local and
1,4 TB persistent storage

● Open Core means a lot of work
○ operations, services, monitoring, logging, accounting
○ autoscaling (bachelor’s thesis)

● Still missing to production
○ SSL, customer portal integration, billing
○ user testing

Questions?

If not:
Write to support@homeatcloud.cz

for beta access to Cloud Foundry at

Offer valid for 2 weeks.
End of beta program will be announced one month in advance.

mailto:support@homeatcloud.cz

