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Virtualization

* First used in 1969 by IBM
* On PC platform since 1999 (Vmware)
— Useful to run an OS on another

e Server virtualization since 2001
— Aims to increase utilization in datacenters
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Virtualization

 OS level virtualization aka. Containers
— Pros: no overhead at all, high memory efficiency

« Shared libraries and caches
— Cons: all guests share one kernel
« Still possible to have different distributions
— Uses kernel facilities for high separation of containers

« namespaces for user IDs, processes, network sockets,
filesystems

« control groups for resource quotas

— Parallels (commercial), OpenVZ (being phased out),
LXC, Docker, runC, Rocket, nSpawn, Warden
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Virtualization

» Advantages of server virtualization
— Increased utilization
— Power savings
— Separation of applications
— Higher flexibility
— Fast server deployment
— Load balancing
— Error resilience




Infrastructure as a Service

* An upgrade to virtualization

* First layer of Cloud Computing
— > general cloud properties
— Automation
— Elasticity
— Self-service and web services
— Pay per use

* Private, public and hybrid



Infrastructure as a Service

* What's a service? Computing power.

— Rationed in units of VM Instances
« An instance has fixed CPU and RAM
« There may be pre-defined types or user-configurable
« Can't modify when running -> horizontal scaling

« Storage
— File storage
— Volumes / Virtual disks (on central storage)

* Network connectivity (In/Out, between VMs)
« Usage of some APls (autoscaling, monitoring)



Scaling process in private laaS
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Webhosting

* Provider does all hardware and software
administration

» Service usually includes domain
registration and e-mail

 Limits usable programming languages

— Most have PHP and ASP/.NET, some Perl
and Python, very few Java and Ruby

* Changes to the environment only through
the provider's service personnel



Webhosting

* Three types
— Free — mostly without scripting or with ads
— Shared — good for low traffic sites

— No information about how many sites on one server
« Hostings are compared only by latency

— Multitenancy security measures mostly minimal
— Managed

* eq. Server rental with administration
« Terms can be arranged quite individually



Platform as a Service

« Similar to webhosting in concept
— Used mostly to run web applications

» Second layer of Cloud Computing

— > general cloud properties
« Automation
* Elasticity
» Self-service and web services
» Pay per use



Platform as a Service

» Similarities to webhosting
— Takes care of software platform administration

— Limits available programming languages
 Selection is different, with regard to scalability
» mostly Ruby, Java, Python, PHP, Node.JS

 Often includes services like SQL and noSQL
databases, queue services, caches, etc.



Platform as a Service

* Two types of PaaS

—on laaS

» Uses a layered approach
— Depends on laaS for multitenancy
» And for the servers themselves

» Adds application deployment and scaling

— Direct
 Platform built from scratch, own hardware

« May or may not contain virtualization
— Must secure multitenancy somehow else
— > using containers in recent versions



Platform as a Service

 Added value

— Development tools
* From a command-line tool to deploy apps
« To a web dashboard with monitoring
» Or even a click-up-your-own-app web IDE
— Special services and APls
* To use platform features, databases, ..
— Using platform specifics induces risk of
vendor-lock in
« Open-source platforms have several providers



Where to get PaaS

* Public

— Google App Engine, Microsoft Azure, Amazon
Elastic Beanstalk, SalesForce Heroku,
AppFog, RedHat OpenShift, ActiveState
Stackato, CloudBees, IBM BlueMix, Pivotal

 Private (few mature projects)

— Pivotal Cloud Foundry, RedHat OpenShift,
Tsuru

— Wouldn’t waste time with the rest (Cloudify
didn’t work in dipl. thesis)



DevOps

Also known as Infrastructure as Code
— Server configuration is scripted

Fills the gap between developers and system
administrators

Repeatable processes that let you scale out
quickly

— Even if you start small, you write the scaling
Examples (by age): CFEngine, Puppet, Chef,
Ansible, SaltStack

— Commercial: RightScale, Amazon OpsWorks



Docker

e Recently, container virtualization
experienced a boom

e Docker platform took the lead in 2013
o LXC has been here since 2008, OpenVZ 2005

e \Why did it create a market disruption?
e Let's have a look at its design:



The Challenge
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Results in N X N compatibility nightmare
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Do | worry about Can I transport quickly
how goods interact and smoothly
(e.g. coffee beans (e.g. from boat to train
next to spices) to truck)
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Also an NxN Matrix
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Multiplicity of Goods

methods for
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Multiplicity of
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This eliminated the NXN problem...
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Docker is a shipping container system for
code
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docker

Docker solves the NXN problem
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Docker: Build once, run everywhere

1. Prepare your development environment

2. Deploy it directly to production servers
(no need to rebuild your app)

... this concept is known from Java

https://en.wikipedia.org/wiki/Write once, run anywhere



https://en.wikipedia.org/wiki/Write_once,_run_anywhere
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Virtual Machines vs. Containers
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Docker layers in action

docker images --tree

Warning: '--tree' is deprecated, it will be removed soon. See usage.
L-511136ea3c5a Virtual Size: 0 B Tags: scratch:latest

L -59e359cb35ef Virtual Size: 85.18 MB
L —e8d37d9e3476 Virtual Size: 85.18 MB Tags: debian:wheezy
L—c58b36b8f285 Virtual Size: 85.18 MB
L -90eabe05b074 Virtual Size: 118.6 MB
L—5dc74cffc471 Virtual Size: 118.6 MB Tags: vim:latest



Docker’s architecture
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Source: https://docs.docker.com/engine/introduction/understanding-docker/



https://docs.docker.com/engine/introduction/understanding-docker/

Docker Hub

Cloud-based registry service for building and
shipping application or service containers.

e Image Repositories
e Automated Builds
e Webhooks

https://hub.docker.com/



https://hub.docker.com/
https://hub.docker.com/

Docker Summary

Container platform
o uses cgroups and namespaces through libcontainer

Unique features

o shipping format

o layered structure

o central repository of images

Keywords
o image
o instance

o volume
o open port

Examples: https://github.com/sameersbn



https://github.com/sameersbn

Docker critique

e \We already have shipping formats
o deb? rpm? OVF? tgz is inside OCI| anyway.
e Why layers anyway?
o Memory reduction not necessary - we have KSM

o Driver trouble

m overlays: incompatible kernel implementations
e aufs -> overlayfs -> overlayfs2

m Dbtrfs: “too many references”, crashed fs with du
m device-mapper thin provisioning: wastes space

e Central repository = a loaded gun
o 2015 survey: Over 30% of Official Images in Docker
Hub Contain High Priority Security Vulnerabilities



https://www.banyanops.com/blog/analyzing-docker-hub/

The gap between Docker and PaaS

Cl for consistent building of images

Image repository

Network security

-Host OS patching

_oad Balancing and Scaling

Databases and other persistence services
_0gging and monitoring

Service discovery

Orchestration of container relationships
Application updates and redeployment




Ref.arch. according to Robert Greiner

Container Development / Release Pipeline
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Link to Blog: Continuous Integration with Docker
http://bit.ly/2aeAlio

= Sonatype



http://bit.ly/2aeA1io
http://bit.ly/2aeA1io

Ref.arch. according to eggs unimedia

Docker Build Pipeline
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Link to Presentation: Locally it worked! Virtualizing Docker
http://bit.ly/2au62ra
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Cloud Foundry

Container technology not related to Docker
o “Warden” also uses cgroups and namespaces

No layers and central repository
Application is a first-class concept

o the container is an implementation detail

o built by language-specific buildpack at staging time
Provides ready-made Services

o MySQL, Postgres, Mongo, Redis, Riak, RabbitMQ
Load balancing and scaling built in

Can run Docker containers as well

o volumes and TCP load balancers already available
o virtual networking in the making
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Cloud Foundry market share

Cloud Foundry
Amazon Web Services
Microsoft Azure

Oracle (Java/Database)

Google App Engine

Force.com (Salesforce.com) _ 16%
AliCloud | B2
Kubernetes - 6%

Tencent Weiyun
Red Hat OpenShift
CloudBees

Baidu Cloud
Apcera

Tsuru

None

0 10 20 30 40 50
Cloud Foundry foundation



Cloud Foundry market share
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Cloud Foundry market share
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History in comparison with Kubernetes

e CF is here since 2011

e Kubernetes 2014

e OpenShift also 2011, but was rewritten from
scratch based on Kubernetes

e CF has a history of continual evolution
o originally by VMware
o 2013 transferred to daughter company Pivotal
o 2014 Cloud Foundry Foundation established
m Open-source governance

All dates in this presentation are from Wikipedia



Application deployment

e Process starts with magic words “cf push”

O

O O O O O O

Uploads and stores app files

Examines and stores app metadata

Buildpack runs and creates a “droplet” of the app
Selects an appropriate Diego cell

Starts the app

Optionally creates a route to the app

Optionally configures service connections



Stacks, Buildpacks, and the rest

e Stack is a base file system
o “cflinuxfs2” is based on Ubuntu 14

e Buildpack packages the app and its
dependencies

Droplet is a container image

Droplets are stored in the Blobstore

Diego cell is the machine running containers

Warden/Garden is the container technology

e |If the standard buildpacks are not enough, you can write
your own
e See what is already available in the community



https://github.com/cloudfoundry-community/cf-docs-contrib/wiki/Buildpacks#community-created
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Monitoring and Scaling

e Open-source version provides APIs to
o see current CPU, memory and disk usage
o scale the number of instances horizontally
o scale the application resource quota vertically
m restarts the app

e Our version will have autoscaling
o metrics from API stored in Influxdb
o user specifies scaling rules
m like CPU over 70% for 5 minutes
o autoscaler engine horizontally scales the app
o all integrated in the Home at Cloud portal
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Routing

e Done by CF component gorouter
e Multiple gorouters behind HAProxy

e Cando

Shared domain
Bring-your-own-domain
Domain with path

Multiple routes to one app
One route to multiple apps

e Recently added component tcprouter

O O O O O



Blue-green deployment

CF demo-time.example.com i
ROUTER




Blue-green deployment
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Blue-green deployment

demo-time.example.com > e
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Blue-green deployment

CF demo-time.example.com
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Lyve demo

1. Get the CLI tool “cf” from Github

2 . #L cf login -a http://api.cftest.homeatcloud.cz -u user -p pass --skip-ssl-validation

3. Try and see what you have:

cf help # All commands

cf apps # Deployed apps

cf marketplace # Available CF services
cf services # Deployed service instances
cf logs --recent spring-music # logs

cf app spring-music # info

cf ssh spring-music # ssh



https://github.com/cloudfoundry/cli#downloads

How did | get the service?

e Create the MongoDB service

cf create-service MongoDB standard <instance_name>
cf bind-service <app_name> <instance_name>

e The App receives this JSON ENV variable:

VCAP_SERVICES=
{ "mongodb™: [ {
"name": "db-for-spring-music",
"label": "mongodb",
"tags": [
"mongodb"
1,
"plan”; "standard",
"credentials": {
"uri":
"mongodb://mongo_username:mongo_pass@192.168.3.12:27017,192.168.3.11:27017 1
92.168.3.10:27017/dbname"

por1}



And the app?

e Official CF demo app in Java
o You probably need to have a JDK in your $PATH

git clone https://github.com/cloudfoundry-samples/spring-music.git
cd spring-music/
./gradlew assemble

cf push

cf bind-service spring-music <service_instance_name>
cf restart spring-music

# if you see timeouts, they’re due to insufficient entropy on the hosting VM; try
cf push --health-check-type none

# or before restart/restage

cf set-health-check spring-music none



Why | could use just cf push

... without arguments?
The app has a manifest.yml file:

$ cat manifest.ymi

applications:
- name: spring-music
memory: 1G
random-route: true
path: build/libs/spring-music.jar


https://docs.cloudfoundry.org/devguide/deploy-apps/manifest.html

| already had a Docker image!

e CF runs those as well
o Quite new, not as well tested
o You should get the same ENV variable with service
info when your Entrypoint is called
e Only works with images in Dockerhub
o ..or another public registry, not local uploads (yet?)

e You may try some examples:

cf push test-app -o cloudfoundry/test-app
#or
cf push lattice-app -o cloudfoundry/lattice-app



Don’t try this at home

e Actually, you can. See microBOSH
e Our beta deployment on OpenStack

e Including admin station and ELK, uses
o 51 VMs, 65 vCPU, 82 GB RAM, 885 GB local and
1,4 TB persistent storage
e Open Core means a lot of work
o operations, services, monitoring, logging, accounting
o autoscaling (bachelor’s thesis)
e Still missing to production

o SSL, customer portal integration, billing
o user testing



Questions?

If not:
Write to support@homeatcloud.cz
for beta access to Cloud Foundry at

Offer valid for 2 weeks.
End of beta program will be announced one month in advance.


mailto:support@homeatcloud.cz

