

Future
of distributions

Speaker:

Jiří Eischmann
Template by:

William Moreno Reyes

Available under Creative Commons BY-SA (excluding images)

Agenda:

● Traditional model
● New requirements for
distributions
● New trends in software
distribution
● Fedora.NEXT

New Requirements

● There are deployments with thousands of
servers.

● The industry slowly moving to cloud
architecture.

● One size does not fit all.
● Development cycles are shorter.

New Requirements

● Scalability (large deployments easily
manageable)

● Flexibility (different versions of software, faster
release cycle)

● Light weight (small core system with fast boot)

Packaging System

● Designed 20 years ago.
● Push (back then) vs pull (now) inclusion of

software.
● High granularity.
● The whole repository as one functional system

(no clear boundaries between the system and
applications).

● Dynamic linking.

Shortcomings

● Not ideal for having different versions of the
same software.

● Problematic rollback.
● Isolation of software.
● Too hard barriers to entry for additional

software.

Software Collections

● Several versions of the same software in the
same system.

● Separated from the system files, located in
/opt

● /opt/provider/application-version
● yum install ruby193
● scl enable ruby193 'ruby -v'

New Trends?

Containers!
Containers!

Containers!

Containers

● Sandboxing - isolation from the rest of the system.

● Very small overhead compared to virtualization.

● Indepedent on other software (yes, bundling)

● You can limit resources.

● Better testa-bil-i-ty and re-pro-ducibil-i-ty.

● Have been with us for some time, but they're finally getting
the necessary tooling for “applificantion”.

Docker

● Utilizes LXC and cgroups.
● High-level API.
● Layers using aufs/device mapper.
● Integrated with many projects (OpenStack, Puppet,...).
● Runs on virtually any modern Linux system (many

officially supported distributions).
● Sharing images via repositories.
● De facto a standard for containers nowadays.

Docker Layers

CoreOS

Systemd-nspawn

● Started as a debugging tool for systemd.
● “chroot on steroids”:

– Can communicate with the host system via IPC (DBus).

– Socket activation.

– Complete virtualization of process and directory tree.

● Unlike LXC and like chroot it just works.

yum -y --releasever=20 --nogpg --installroot=/srv/mycontainer --disablerepo='*'
--enablerepo=fedora install systemd passwd yum fedora-release vim-minimal

Linux Apps

● Standard sandboxed container for distributing
Linux desktop apps.

● Distributed in a single file.
● Most likely will have a similar design as

systemd-nspawn.
● Waiting for kdbus.
● Wayland-aware.

OSTree

● a tool for managing bootable, immutable,
versioned filesystem trees.

● Something between a package manager and
a tool for managing disk images.

● Using chroot and hard links.
● Atomic upgrades and rollback.
● Originally developed for GNOMEContinuous.

Fedora.NEXT

● Post-F20 future for Fedora.
● Three different products: Cloud, Server,

Workstation.
● Sharing the same BaseOS.
● More distribution channels:

– Copr for personal repositories.

– Fedora Ugly for packages that don't meet the Fedora
standards yet.

– LinuxApps, Docker, Software Collections.

Any question?

Jiri Eischmann
jiri@eishcmnann
facebook.com/sesivany
@sesivany
jiri@eischmann.cz
blog.eischmann.cz

Dont need to fill all, just a idea, delete icons if you dont
use it;)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

