
Tomas Barton (@barton_tomas)

Load balancing

• one server is not enough

Time to launch new instance
• new server up and runing in a few seconds

Job allocation problem

• run important jobs first

• how many servers do we need?

Load trends
• various load patterns

Goals

• effective usage of resources

Goals
• scalable

Goals
• fault tolerant

Infrastructure

1 scalable

2 fault-tolerant

3 load balancing

4 high utilization

Someone must
have done it before . . .

Someone must
have done it before . . .

Yes, it was Google

Google Research

2004 - MapReduce paper
• MapReduce: Simplified Data Processing on Large Clusters

by Jeffrey Dean and Sanjay Ghemawat from Google Lab

⇒ 2005 - Hadoop
• by Doug Cutting and Mike Cafarella

Google’s secret weapon

“I prefer to call it the
system that will not be
named.”

John Wilkes

NOT THIS ONENOT THIS ONE

“Borg”
unofficial name

X distributes jobs between
computers

X saved cost of building at least
one entire data center

− centralized, possible
bottleneck

− hard to adjust for different job
types

“Borg”

200x – no Borg paper at all

2011 – Mesos: a platform for fine-grained resource sharing
in the data center.

• Benjamin Hindman, Andy Konwinski, Matei Zaharia,

Ali Ghodsi, Anthony D. Joseph, Randy Katz, Scott

Shenker, and Ion Stoica. Berkeley, CA, USA

The future?

2013 – Omega: flexible, scalable schedulers for large
compute clusters

• Malte Schwarzkopf, Andy Konwinski, Michael
Abd-El-Malek, John Wilkes (SIGOPS European
Conference on Computer Systems (EuroSys), ACM,
Prague, Czech Republic (2013), pp. 351-364)

• compares different schedulers
• monolithic (Borg)
• Mesos (first public release, version 0.9)
• Omega (next generation of Borg)

Benjamin Hindman

• PhD. at UC Berkley
• research on multi-core

processors

“Sixty-four cores or 128 cores on a single chip looks a
lot like 64 machines or 128 machines in a data center”

“We wanted people to be able to program for the data“We wanted people to be able to program for the data

center just like they program for their laptop.”center just like they program for their laptop.”

Evolution of computing

Datacenter

• low utilization of nodes
• long time to start new node (30 min – 2 h)

Evolution of computing

Datacenter Virtual Machines

• even more machnines to manage
• high virtualization costs
• VM licensing

Evolution of computing

Datacenter Virtual Machines Mesos

• sharing resources
• fault-tolerant

Supercomputers

• supercomputers aren’t affordable
• single point of failure?

IaaC

Infrastructure as a computer

• build on commodity hardware

Scalablity

First Rule of Distributed Computing

“Everything fails all the time.”

— Werner Vogels, CTO of Amazon

Slave failure
• no problem

Master failure
• big problem
• single point of failure

Master failure – solution
• ok, let’s add secondary master

Secondary master failure

× not resistant to secondary master failure
× masters IPs are stored in slave’s config
• will survive just 1 server failure

Leader election

X in case of master failure new one is elected

Leader election

X in case of master failure new one is elected

Leader election
• you might think of the system like this:

Mesos scheme
• usually 4-6 standby masters are enough
• tolerant to |m| failures, |s| � |m|
|m| . . . number of standby masters
|s| . . .number of slaves

Mesos scheme
• each slave obtain master’s IP from Zookeeper
• e.g. zk://192.168.1.1:2181/mesos

zk://192.168.1.1:2181/mesos

Common delusion

1 Network is reliable
2 Latency is zero
3 Transport cost is zero
4 The Network is homogeneous

Cloud Computing

design you application for failure

• split application into multiple components
• every component must have redundancy
• no common points of failure

“If I seen further than
others it is by standing
upon the shoulders of
giants.”

Sir Isaac Newton

ZooKeeper

ZooKeeper

ZooKeeper

ZooKeeper

• not a key-value storage
• not a filesystem
• 1 MB item limit

Frameworks

• framework – application running on Mesos

two components:
1 scheduler
2 executor

Scheduling

• two levels scheduler

• Dominant Resource Fairness

Mesos architecture

• fault tolerant
• scalable

Isolation

• using cgroups
• isolates:

• CPU
• memory
• I/O
• network

Example usage – GitLab CI

AirBnB

Any web application can run on Mesos

Distributed cron

YARN
Alternative to Mesos

• Yet Another Resource Negotiator

Where to get Mesos?
• tarball – http://mesos.apache.org
• deb, rpm – http://mesosphere.io/downloads/
• custom package – https:
//github.com/deric/mesos-deb-packaging

• AWS instance in few seconds –
https://elastic.mesosphere.io/

http://mesos.apache.org
http://mesosphere.io/downloads/
https://github.com/deric/mesos-deb-packaging
https://github.com/deric/mesos-deb-packaging
https://elastic.mesosphere.io/

Configuration management

• automatic server configuration
• portable
• should work on most Linux distributions (currently

Debian, Ubuntu)
• https://github.com/deric/puppet-mesos

https://github.com/deric/puppet-mesos

Thank you for attention!

tomas.barton@fit.cvut.cz

Resources

• Containers – Not Virtual Machines – Are the Future
Cloud

• Managing Twitter clusters with Mesos
• Return of the Borg: How Twitter Rebuilt Google’s

Secret Weapon
• Mesos: A Platform for Fine-Grained Resource

Sharing in the Data Center, Hindman, Benjamin and
Konwinski, Andrew and Zaharia, Matei and Ghodsi,
Ali and Joseph, Anthony D. and Katz, Randy H. and
Shenker, Scott and Stoica, Ion; EECS Department,
University of California, Berkeley 2010

http://www.linuxjournal.com/content/containers%E2%80%94not-virtual-machines%E2%80%94are-future-cloud
http://www.linuxjournal.com/content/containers%E2%80%94not-virtual-machines%E2%80%94are-future-cloud
http://www.youtube.com/watch?v=37OMbAjnJn0
http://www.wired.com/wiredenterprise/2013/03/google-borg-twitter-mesos/all/
http://www.wired.com/wiredenterprise/2013/03/google-borg-twitter-mesos/all/
http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-87.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-87.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-87.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-87.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-87.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-87.pdf

	Why Mesos?

